SkillsUSA 2020 – Additive Manufacturing State Challenge – Power Up!

Overview

The goal of the 2020 SkillsUSA Additive Manufacturing State Competition is to challenge competitors at that state level and send the best prepared students to compete at the National Competition in June. Each year’s suggested state competition focuses on an additive manufacturing design with strict requirements on form, fit, and function of compact and intricate designs like nationals.

The below contest has been designed with the upcoming National Competition in mind and is designed to challenge the understanding of students and their skills in Additive Manufacturing.

This year’s contest challenges students to redesign an outdoor 3D-printed outlet enclose to be a USB outlet cover that leans into the needs of today’s power user.

Competitors will need to use their 3D printing knowledge to design a part that prints within the specified build volume, materials and times specified. The designed enclosure will need to screw into the testing rig and meets the specified requirements on the score sheet.

Contest state chairs need to fill in blanks or modify contest to meet their contests needs or specs. See yellow highlights!

The contest descriptions have been written so that you can distribute directly to competitors. If you’d like to make modifications to fit your state’s needs, please do.

If you have questions about the contest, please email:
edu.curriculum@stratasys.com
Materials & Supplies Needed

Materials to be Provided by Student Competitor:

- 3D design submitted by 12:00PM, March 13th, 2020 if printed by Paton Group
- Thumb drive loaded with 3D design
- Engineering notebook
- Presentation

Materials to be Provided by State Competition Host:

- 3D printed testing rig
- Lumber (least 12”x12” to secure rig to)
- USB cord (such as iPhone charging cable)
- “Standard” screws
- *Student designs 3D printed
*At the national competition Stratasys prints on-site, at the state level you have the option to have students print their designs before and bring them, print them at a 3D printing partner before and bring them on competition day or print on-site if you have access to a printer and a multi-day competition.

About the Testing Rig

- The Challenge Rig is a single 3D-printed bracket consisting of 2x ¼-inch “mounting holes”
- The overall dimensions of the rig are as follows: 2” (long) x 2.75” (wide) x 0.625” (tall).
- It is recommended that competition host have the rig printed and attached to a flat surface (a piece of lumber or plywood is sufficient). The Contest 2 rules will utilize the flat surface below the rig; so the surface should be at least 12”x12”.
- The files to print can be found on GrabCAD here: https://grabcad.com/library/skillsusa-2020-state-challenge-1
Judging Suggestions:

Students should be judged on:

1) Engineering notebooks
 a) Did the students follow the guidelines provided? States are encouraged to provide their own Engineering Notebook Guidelines.
 b) Did students show their design process?

2) Following all requirements outlined in contest criteria
 a) Dimensions
 b) Build time
 c) Build volume
 d) Material usage
 e) Support material usage
 f) Did the students consider additive manufacturing when creating their design? Are they able to explain the role that additive manufacturing played in their design?

3) Presentation
 a) Does the presentation include:
 i) Explanation of the design process through examples in their engineering notebook
 ii) Understanding of form, fit, and function

4) Quality of final 3D printed part
 a) Does it perform the function in the manner it was designed to do?
 b) Does it meet all requirements in contest guidelines?
 c) Does the printed part include a moving assembly?
 d) Did the students design the part with additive manufacturing in mind?
Welcome to the “Power Up!” challenge! The task at hand is to design a hinged, covered enclosure (like the one pictured above) for a wall-mounted standard USB port. “What's the catch?” you say. Well, there are five, and here they are:

1. The enclosure must affix securely to the provided USB port (see illustrated CAD below) using the screw holes (screws will be provided at the testing location).

2. The enclosure must completely close the “hole in the wall” (see illustrated CAD below by red circle)

3. The enclosure must have a mechanically hinged lid (printed in place) that does not use external parts or hardware. This enclosure lid must open at least 180 degrees and stay open at 90 degrees when placed in that position.

4. Device should have some uniqueness in design – such as shape, 3D printed texture, text… the options are endless – you are the product designer – flex your creative muscle.

5. The device must follow these 3D printing specs measured in GrabCAD Print (when measured using 0.010” solid ASA standard build settings):
 - Prints in less than *3 hours*.
 - With a build volume of no greater than *3X3X3in*.
 - Using no more than 5 in² of build material
 - Using no more than 2 in³ amount* of support material
Contest Criteria

Contest days:
Students should submit designs by 8:15AM to Competition Judges - TBD

On Day 1 of contest students must submit by 8:15AM:

1. Engineering Notebook (Engineering notebook guidelines below)
2. 3D printed design files on USB
3. Printed part (if part submitted for printing to Paton Group by March 13th deadline, will be provided by contest chair day of contest)
4. Presentation of design

1. Engineering Notebook should:
 - Be clearly labeled with contestant name(s), date and page # on each page
 - Begin with a problem statement
 - Include discovery and documentation of approach to solve problem
 - Include sketched design concepts with critical features labeled
 - Critical dimensions clearly labeled in design sketch
 - Considerations for designing for FDM distinctly addressed (i.e. part strength, part orientation) especially including any expected risks during printing
 - Design decisions and alternatives are documented and evaluated thoughtfully

2. 3D Printed Design - Students must create a design that:
 - Prints in less than *3 hours*
 - With a build volume of no greater than *3X3X3 in*.
 - Using no more than 5 in³ of build material
 - Using no more than 2 in³ amount* of support material

 *Students must submit print files to be printed via GrabCAD Workbench no later than 12:00PM *PST* on *March 13th, 2020*. Final prints will be delivered day of contest so that students can test, assemble/modify and be evaluated.*

3. Presentation Criteria
 - The competitor clearly describes their understanding of the problem to be solved.
 - Design Process: good design logic is used for key design choices was intentional and well-communicated
 - The presentation is professional and well-rehearsed
 - Practical evaluation: Part functions way team intended 100% of time.
On Day 2 of contest students must submit by 8:15AM:

- Revised Engineering Notebook
- Printed part (printed onsite with SkillUSA NV provided 3d Printers)
- Presentation of redesign